Extensions 1→N→G→Q→1 with N=C2 and Q=C2≀C22

Direct product G=N×Q with N=C2 and Q=C2≀C22
dρLabelID
C2×C2≀C2216C2xC2wrC2^2128,1755


Non-split extensions G=N.Q with N=C2 and Q=C2≀C22
extensionφ:Q→Aut NdρLabelID
C2.1C2≀C22 = 2+ 1+42C4central extension (φ=1)32C2.1C2wrC2^2128,522
C2.2C2≀C22 = C24.22D4central extension (φ=1)32C2.2C2wrC2^2128,599
C2.3C2≀C22 = C25.C22central extension (φ=1)16C2.3C2wrC2^2128,621
C2.4C2≀C22 = C23⋊D8central stem extension (φ=1)16C2.4C2wrC2^2128,327
C2.5C2≀C22 = C23⋊SD16central stem extension (φ=1)16C2.5C2wrC2^2128,328
C2.6C2≀C22 = C4⋊C4.D4central stem extension (φ=1)32C2.6C2wrC2^2128,329
C2.7C2≀C22 = (C2×C4)⋊D8central stem extension (φ=1)32C2.7C2wrC2^2128,330
C2.8C2≀C22 = (C2×C4)⋊SD16central stem extension (φ=1)32C2.8C2wrC2^2128,331
C2.9C2≀C22 = C24.9D4central stem extension (φ=1)16C2.9C2wrC2^2128,332
C2.10C2≀C22 = C232SD16central stem extension (φ=1)32C2.10C2wrC2^2128,333
C2.11C2≀C22 = C23⋊Q16central stem extension (φ=1)32C2.11C2wrC2^2128,334
C2.12C2≀C22 = C4⋊C4.6D4central stem extension (φ=1)32C2.12C2wrC2^2128,335
C2.13C2≀C22 = Q8⋊D4⋊C2central stem extension (φ=1)32C2.13C2wrC2^2128,336
C2.14C2≀C22 = (C2×C4)⋊Q16central stem extension (φ=1)32C2.14C2wrC2^2128,337
C2.15C2≀C22 = C24.12D4central stem extension (φ=1)32C2.15C2wrC2^2128,338
C2.16C2≀C22 = C24⋊D4central stem extension (φ=1)16C2.16C2wrC2^2128,753
C2.17C2≀C22 = C242Q8central stem extension (φ=1)16C2.17C2wrC2^2128,761
C2.18C2≀C22 = C24.33D4central stem extension (φ=1)32C2.18C2wrC2^2128,776
C2.19C2≀C22 = C24.182C23central stem extension (φ=1)32C2.19C2wrC2^2128,794
C2.20C2≀C22 = D4≀C2central stem extension (φ=1)84+C2.20C2wrC2^2128,928
C2.21C2≀C22 = C424D4central stem extension (φ=1)164C2.21C2wrC2^2128,929
C2.22C2≀C22 = C42.13D4central stem extension (φ=1)164C2.22C2wrC2^2128,930
C2.23C2≀C22 = C425D4central stem extension (φ=1)168+C2.23C2wrC2^2128,931
C2.24C2≀C22 = C426D4central stem extension (φ=1)168+C2.24C2wrC2^2128,932
C2.25C2≀C22 = C42.14D4central stem extension (φ=1)328-C2.25C2wrC2^2128,933
C2.26C2≀C22 = C42.15D4central stem extension (φ=1)168+C2.26C2wrC2^2128,934
C2.27C2≀C22 = C42.16D4central stem extension (φ=1)328-C2.27C2wrC2^2128,935
C2.28C2≀C22 = C42.17D4central stem extension (φ=1)164C2.28C2wrC2^2128,936
C2.29C2≀C22 = Q8≀C2central stem extension (φ=1)164-C2.29C2wrC2^2128,937

׿
×
𝔽